Question 1.) If `theta` ∈ [0, 2π], then find the correct ranges of `theta` that satisfy the following equations,
(B) `theta` ∈ (`\frac{π}{2}`, `\frac{2π}{3}`) & `theta` ∈ (π, `\frac{4π}{3}`)
(C) `theta` ∈ (`\frac{5π}{6}`, π) & `theta` ∈ (`\frac{5π}{3}`, 2π)
(D) `theta` ∈ (`\frac{3π}{4}`, π) & `theta` ∈ (`\frac{7π}{4}`, 2π)
Answer. (D)
Solution.
Since it is given that,
`sec` `theta` - `tan` `theta` > `sec` `theta` + `tan` `theta`
- `tan` `theta` > `tan` `theta` ⇒ `tan` `theta` < 0
Now let's take the second equation,
`sin` `theta` + `cos` `theta` > 0
or, `sin` `theta` > -`cos` `theta` ⇒ `tan` `theta` > -1
Hence, we got that, 0 > `tan` `theta` > -1
It gives the following ranges of `theta`,
`theta` ∈ (`\frac{3π}{4}`, π) & `theta` ∈ (`\frac{7π}{4}`, 2π)
(B) `frac{7}{4}`
(C) `frac{5}{2}`
(D) `frac{9}{4}`
Answer. (B)
Solution.
Since we have to find the value of `tan` `theta`. So, we will use the following method,
`tan` `theta` = `tan` (`theta/2` + `theta/2`)
= `tan` (`theta/2` + `ф/2` + `theta/2` - `ф/2`)
= `tan` ( `\frac{\theta+\phi}{2}` + `\frac{\theta-\phi}{2}`)
Now, here we will use the following relationship,
`tan` (A+B) = `\frac{\tanA+\tanB}{1-\tanA\tanB}`
But before that, we will find the values of
`tan` (`\frac{\theta+\phi}{2}`) and `tan` (`\frac{\theta-\phi}{2}`)
Since two equations have been given to us, which are as follows
`cos` (`theta` - `\phi`) = `frac{5}{13}`
and, `sin` (`theta` + `\phi`) = `frac{4}{5}`
Let's consider the first equation,
`cos` (`theta` - `\phi`) = `frac{5}{13}`
or, 2`\cos^{2}`(`\frac{\theta-\phi}{2}`) - 1 = `frac{5}{13}` [using the formula of `cos` 2A]
(B) `frac{64}{25}`
(C) `frac{59}{36}`
(D) `frac{71}{16}`
Answer. (A)
Solution.
Since it is given that,
`theta` = `tan^{-1}`(`\frac{1}{2}`) + `tan^{-1}`(`\frac{1}{8}`) + `tan^{-1}`(`\frac{1}{18}`) + `tan^{-1}`(`\frac{1}{32}`) + `tan^{-1}`(`\frac{1}{50}`) + `tan^{-1}`(`\frac{1}{72}`)
It can be written as,
`theta` = `tan^{-1}`(`\frac{2}{4}`) + `tan^{-1}`(`\frac{2}{16}`) + `tan^{-1}`(`\frac{2}{36}`) + `tan^{-1}`(`\frac{2}{64}`) + `tan^{-1}`(`\frac{2}{100}`) + `tan^{-1}`(`\frac{2}{144}`)
or, `theta` = `tan^{-1}`(`\frac{3-1}{1+(3)(1)}`) + `tan^{-1}`(`\frac{5-3}{1+(5)(3)}`) + `tan^{-1}`(`\frac{7-5}{1+(7)(5)}`) + `tan^{-1}`(`\frac{9-7}{1+(9)(7)}`) + `tan^{-1}`(`\frac{11-9}{1+(11)(9)}`) + `tan^{-1}`(`\frac{13-11}{1+(13)(11)}`)
Now, here we will use the following relationship,
`tan^{-1}`(`\frac{A - B}{1 + AB }`) = `tan^{-1}`A - `tan^{-1}`B
So, `theta` = `tan^{-1}`(3) - `tan^{-1}`(1) + `tan^{-1}`(5) - `tan^{-1}`(3) + `tan^{-1}`(7) - `tan^{-1}`(5) + `tan^{-1}`(9) - `tan^{-1}`(7) + `tan^{-1}`(11) - `tan^{-1}`(9) + `tan^{-1}`(13) - `tan^{-1}`(11)
or, `theta` = `tan^{-1}`(13) - `tan^{-1}`(1) = `tan^{-1}`(`\frac{13-1}{1+(13)(1)}`)
or, `theta` = `tan^{-1}`(`frac{12}{14}`) = `tan^{-1}`(`frac{6}{7}`)
or, `tan``theta` = `frac{6}{7}`
(B) `\frac{π}{4}`
(C) `\frac{2π}{3}`
(D) `\frac{π}{3}`
Answer. (D)
Solution.
Since it is given that,
2`cos` `theta` (1 - sinɸ) = `sin^{2}``theta` (tan`theta/2` + `cot``theta/2`) cos ɸ - 1
Now we will solve this equation in parts,
Hence we will get,
2`cos` `theta` - 2`cos` `theta` sin ɸ = 2`sin` `theta` cos ɸ - 1
2`cos` `theta` = 2(`cos` `theta` `sin` ɸ + 2`sin` `theta` cosɸ) - 1
2`cos``theta` = 2`sin`(`theta`+ɸ) - 1
Now the other two equations are,
`tan``theta` < 0
`sin``theta` = `frac{\sqrt{3}}{2}`
If we consider these two equations then we will find that the value of `tan``theta` is negative and the value of `sin``theta` is positive then it means that,
`frac{π}{2}` < `theta` < π
So, `theta` = `frac{2π}{3}`
Hence, cos`theta` = cos`frac{2π}{3}` = `frac{-1}{2}`
Now putting this value in the main equation, we get,
2(`frac{-1}{2}`) = 2sin(`theta`+ɸ) - 1
-1 = 2sin(`theta`+ɸ) - 1
2sin(`theta`+ɸ) = 0
`theta`+ɸ = π
`frac{2π}{3}` + ɸ = π
ɸ = `frac{π}{3}`
(B) `\frac{1}{\sqrt{3}}`
(C) `\frac{\sqrt{3}}{2}`
(D) 1
Answer. (A)
Solution.
Since it is given that,
(B) 1
(C) 2
(D) 0
Answer. (C)
Solution.
Since it is given that,
`tan^{-1}``\frac{1}{1-2x}` - `tan^{-1}``\frac{1}{x-1}` = `tan^{-1}``\frac{1}{x^{2}}`
Now we will use the following formula,
`tan^{-1}``A` - `tan^{-1}``B` = `tan^{-1}``\frac{A-B}{1+AB}`
`tan^{-1}``\frac{1}{1-2x}` - `tan^{-1}``\frac{1}{x-1}` = `tan^{-1}``\frac{3x-2}{3x-2x^{2}}`
(B) `\frac{π}{2}` - `\theta`
(C) `\frac{π}{4}` - `\theta/2`
(D) π + 2`\theta`
Answer. (C)
Solution.
Since it is given that,
sin `\theta` = cos 2ɸ
Now here we will use the following relationship,
So our equation will be,
cos(`\frac{π}{2}` - `\theta`) = cos 2ɸ
cos(`\frac{π}{2}` - `\theta`) = cos(2nπ ± 2ɸ)
nπ ± ɸ = `\frac{π}{4}` - `\theta/2`
(B) -3
(C) 1
(D) -2
Answer. (A)
Solution.
Since it is given that,
`tan^{2}`(𝛼+𝛽) = 18
Now here we will use the following relationship,
`tan` (A+B) = `\frac{\tanA+\tanB}{1-\tanA\tanB}`
But here we need to calculate the values of `tan` 𝛼 and `tan` 𝛽 first and for that we will use the following equation given in the question,
(B) `\frac{1}{2}`
(C) `\frac{4}{3}`
(D) `\frac{2}{9}`
Answer. (B)
Solution.
Since it is given that,
Now we will use the following formula to evaluate `tan` (A+B)
`tan` (A+B) = `\frac{\tanA+\tanB}{1-\tanA\tanB}`
Now putting values of `\tan`A and `\tan`B and further calculation we will get
`tan` (A+B) = `\frac{1}{2}`
(B) `\frac{23\sqrt{2}}{13}`
(C) `\frac{17\sqrt{3}}{5}`
(D) `\frac{31\sqrt{2}}{25}`
Answer. (D)
Solution.
Since it is given that,

0 Comments